Cellular Automata Approaches to Enzymatic Reaction Networks

نویسنده

  • Jörg R. Weimar
چکیده

Cellular automata simulations for enzymatic reaction networks differ from other models for reaction-diffusion systems, since enzymes and metabolites have very different properties. This paper presents a model where each lattice site can can contain at most one enzyme molecule, but many metabolite molecules. The rules are constructed to conform to the Michaelis-Menten kinetics by modeling the underlying mechanism of enzymatic conversion. Different possible approaches to rule construction are presented and analyzed, and simulations are shown for single reactions and simple enzyme networks. 1 Enzymatic Reaction Networks Most reactions in biological systems are catalyzed by enzymes. These enzymes are complex molecules (they are proteins) which are not consumed in the reaction, but simply facilitate the reaction of smaller molecules called metabolites (such as sugar). In a biological cell, thousands of different enzymes are active. Each enzymatic reaction takes molecules of one or more metabolite species, the substrates of this reaction, and converts them into molecules of one or more other species, the products. The products are again substrates to other reactions, and thus the reactions form complex networks. Enzymatic reactions can be described and modeled on different levels of detail: Static Interaction Networks: A first level is the static interaction network, such as the pathways collected in the KEGG database [9, 10, 11], or in the BoehringerMannheim map [13]. Such interaction networks can be constructed from purely qualitative information without relying on any quantitative information, such as reaction rates (except possibly for stoichiometric coefficients). Some analyses can extract additional information from these networks, such as inferring elementary metabolic flux modes [14, 15] (although these rely on the information whether a given reaction is reversible or not, which in turn is a semi-quantitative information on the order of magnitude of the equilibrium constant). Simply on the basis of such interaction networks, no quantitative time-dependent simulation is possible. Reactive Networks: Once quantitative data is available, reaction rates for reactions such as the conversion of a substrate S to a product P by an enzyme E can be described by some rate law, usually in the form of a Michaelis-Menten (MM) law: d[S] dt = Vmax[E][S] Km + [S] (1) with the maximum conversion rate Vmax and the Michaelis-Menten coefficient Km. A more detailed description would contain rates for the elementary reactions leading to such an overall MM rate [1]: E + S k1 ⇀↽ k−1 ES k2 →E + P. (2) Here, several rate constants need to be measured, which is usually not done or not possible. Most reactions in a realistic reaction network are more complicated, since they involve two or more substrates and two or more products, such as energy-providing ATP. In these cases, more coefficients need to be specified, and in addition the mechanism must be specified, such as BiBiRandom (in which case the two substrates may bind in any order) or Ordered BiBi (where the substrates must bind in a specific order). Other effects, such as competitive inhibition complicate the situation further. Given a network of enzymatic reactions and the corresponding reaction rates, one can simulate the network by solving the ODEs numerically, or using stochastic simulation methods [7, 8]. A static approach is to analyze steady states, parameter dependences or sensitivities, etc.. Space and Transport Phenomena. The space and diffusion or other transport phenomena are usually only taken into account by compartmentalizing the system where necessary, but they can also be included explicitly (as reactiondiffusion equations, or probabilistically in the stochastic simulation approach [6, 17]). The most detailed simulation would be a full molecular dynamics simulation of the cell, but this is by far not feasible yet. In this paper I present an approach based on cellular automata for simulating enzymatic reaction networks including diffusive transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches

The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...

متن کامل

A Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring

All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...

متن کامل

An Ant-Colony Optimization Clustering Model for Cellular Automata Routing in Wireless Sensor Networks

High efficient routing is an important issue for the design of wireless sensor network (WSN) protocols to meet the severe hardware and resource constraints. This paper presents an inclusive evolutionary reinforcement method. The proposed approach is a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every agent...

متن کامل

Pattern Formation of the FitzHugh-Nagumo Model: Cellular Automata Approach

FitzHugh-Nagumo (FHN) model is a famous Reaction-Diffusion System which first introduced for the conduction of electrical impulses along a nerve fiber. This model is also considered as an abstract model for pattern formation. Here, we have used the Cellular Automata method to simulate the pattern formation of the FHN model. It is shown that the pattern of this model is very similar to those...

متن کامل

A Cellular Learning Automata (CLA) Approach to Job Shop Scheduling Problem

Job shop scheduling problem (JSSP), as one of the NP-Hard combinatorial optimization problems, has attracted the attention of many researchers during the last four decades. The overall purpose regarding this problem is to minimize maximum completion time of jobs, known as makespan. This paper addresses an approach to evolving Cellular Learning Automata (CLA) in order to enable it to solve the J...

متن کامل

An Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks

The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002